

Composites Centre Sweden

An LTU and Swerea SICOMP collaboration

Aim of the Composites Centre Sweden

To advance research and education in composite materials and manufacturing

Why?

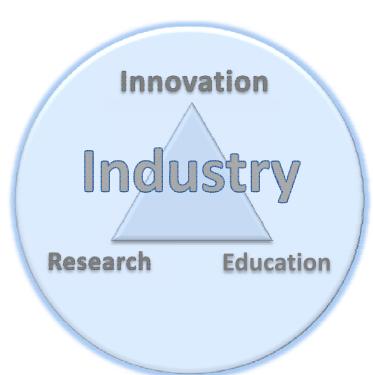
 To provide industry with the skills and technology to lead sustainable development using composites

Why LTU?

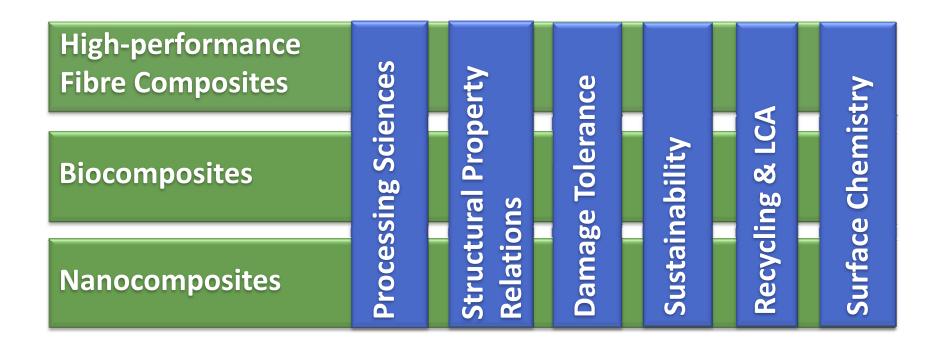
- Strong composite research and existing courses in composite material
- Good co-operation and geographically close to Swerea SICOMP
- Good network for industrial contacts

How?

Research


- Build on existing scientific excellence
- Increase the research in and between the institutions
- Create industrial projects

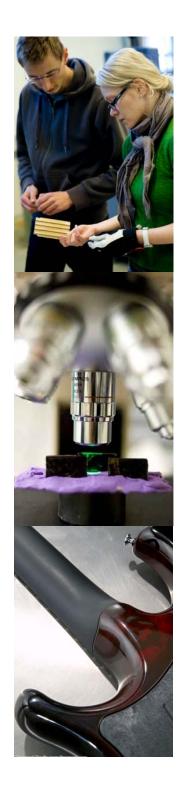
Education


 Establish an internationally renowned centre for composites education

Innovation

- Create high technology spin-off companies
- Technology insertion in existing companies

Our research areas



High-performance fibre composites

Vision:

- Expanding the range of application
- Energy saving by lightweight design in a lifecycle perspective
- Fields: aerospace, marine, power and automotive applications
- Today's challenge: expansion of limits of application
 - Service at high temperatures
 - Chemically aggressive environments
 - Performance-cost efficiency
 - Added functionality

Biocomposites

Vision: Develop next-generations renewable lightweight composites for structural applications

Fields: transportation, building, furniture etc. Challenges:

- Complex behaviour of natural materials
- Processing technologies
- Durability, strength and toughness
- 100% natural materials
- Lack of accurate materials models

Why us?

- Long experience on natural materials and composites
- Processing-property relations, mechanics, modelling, design
- Excellent laboratory facilities

Nanocomposites

Vision: Develop new environmentally friendly, multifunctional nanostructured composites

- Fields: medical, membranes, transportation etc.
- Next generation of nanomaterials and nanocomposites
- Nano-sized materials are either created by nature or are man-made as e.g. carbon nanotubes

Challenges

- Processing technologies
- Dispersion and distributions
- Nanomaterials of desired size and size distribution, morphology, crystallinity and chemical composition
- Characterization methods

Why us?

 Competencies in processing, advanced characterisation, chemistry, mechanics, modelling

Education

Education programs at MSc and PhD-level

- Phase 1: Establish an engineering education programme package
 - Master degree in composites
- Phase 2: Establish a research school on composites materials (example Lighter)
 - For PhD students
- Courses with invited industrial and international lectures
- Students to educate themselves within composite materials science
- Industrial aspects an essential part of the course package
- Co-ordinated on a national and Nordic level to avoid unnecessary overlap

Some possible partners:

FHO Fachhochschule Ostschweiz

Master degree on composites 120 ETC

Obligatory courses

Composite Materials
Biocomposites
Composite Design and Numerical
Methods
Organic and Biochemistry

Project course, 30 ECTS Master thesis, 30 ECTS

Selectable courses

Advanced Materials Characterization

Techniques

Aerospace Materials

Materials Modelling

Materials Selection and Eco Design

Nanostructured Materials and

Nanotechnology

High Temperature Materials

Polymer Science and Engineering II-

Processing and Design

Mechanics of Fibre Composites

Year 1 (Example)

Composite materials	Biocomposites	Materials modelling	Aerospace materials
Organic chemistry and biochemistry	Composite design and	Polymer science and engineering II	Nanostructured materials

Year 2

Project course 30 ETC	Master thesis 30 ETC